Particle Swarm Optimization

Particle Swarm Optimization
In computational science, particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formula over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions.
PSO is originally attributed to Kennedy, Eberhart and Shi and was first intended for simulating social behavior, as a stylized representation of the movement of organisms in a bird flock or fish school. The algorithm was simplified and it was observed to be performing optimization. The book by Kennedy and Eberhart describes many philosophical aspects of PSO and swarm intelligence. An extensive survey of PSO applications is made by Poli. Recently, a comprehensive review on theoretical and experimental works on PSO has been published by Bonyadi and Michalewicz.
PSO is a meta heuristic as it makes few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. However, meta heuristics such as PSO do not guarantee an optimal solution is ever found. Also, PSO does not use the gradient of the problem being optimized, which means PSO does not require that the optimization problem be differentiable as is required by classic optimization methods such as gradient descent and quasi-newton methods.
Inner workings
There are several schools of thought as to why and how the PSO algorithm can perform optimization.
A common belief amongst researchers is that the swarm behaviour varies between exploratory behaviour, that is, searching a broader region of the search-space, and exploitative behaviour, that is, a locally oriented search so as to get closer to a (possibly local) optimum. This school of thought has been prevalent since the inception of PSO. This school of thought contends that the PSO algorithm and its parameters must be chosen so as to properly balance between exploration and exploitation to avoid premature convergence to a local optimum yet still ensure a good rate of convergence to the optimum. This belief is the precursor of many PSO variants, see below.
Another school of thought is that the behaviour of a PSO swarm is not well understood in terms of how it affects actual optimization performance, especially for higher-dimensional search-spaces and optimization problems that may be discontinuous, noisy, and time-varying. This school of thought merely tries to find PSO algorithms and parameters that cause good performance regardless of how the swarm behaviour can be interpreted in relation to e.g. exploration and exploitation. Such studies have led to the simplification of the PSO algorithm, see below.
Convergence
In relation to PSO the word convergence typically refers to two different definitions:
- Convergence of the sequence of solutions (aka, stability analysis, converging) in which all particles have converged to a point in the search-space, which may or may not be the optimum,
- Convergence to a local optimum where all personal bests p or, alternatively, the swarm's best known position g, approaches a local optimum of the problem, regardless of how the swarm behaves.
Convergence of the sequence of solutions has been investigated for PSO. These analyses have resulted in guidelines for selecting PSO parameters that are believed to cause convergence to a point and prevent divergence of the swarm's particles (particles do not move unboundedly and will converge to somewhere). However, the analyses were criticized by Pedersen for being oversimplified as they assume the swarm has only one particle, that it does not use stochastic variables and that the points of attraction, that is, the particle's best known position p and the swarm's best known position g, remain constant throughout the optimization process. However, it was shown that these simplifications do not affect the boundaries found by these studies for parameter where the swarm is convergent. Considerable effort has been made in recent years to weaken the modeling assumption utilized during the stability analysis of PSO, with the most recent generalized result applying to numerous PSO variants and utilized what was shown to be the minimal necessary modeling assumptions.