Insights into Extremophile

Image

An extremophile is an organism with optimal growth in environmental conditions considered extreme and that it is challenging for a carbon-based life form, including all known life, to survive.

These organisms are dominants in the evolutionary history of the planet. Dating back to more than 40 million years ago, extremophiles have continued to thrive in the most extreme conditions, making them one of the most abundant life forms. This is not the same as a more anthropocentric and non-scientific view which considers an extremophile to be an organism that lives in environments uncomfortable to humans. In contrast, organisms that live in more moderate environmental conditions, according to an anthropocentric view, may be termed mesophiles or neutrophiles.

There are many classes of extremophiles that range all around the globe; each corresponding to the way its environmental niche differs from mesophilic conditions. These classifications are not exclusive. Many extremophiles fall under multiple categories and are classified as polyextremophiles. For example, organisms living inside hot rocks deep under Earth's surface are thermophilic and piezophilic such as Thermococcus barophilus. A polyextremophile living at the summit of a mountain in the Atacama Desert might be a radioresistant xerophile, a psychrophile, and an oligotroph. Polyextremophiles are well known for their ability to tolerate both high and low pH levels.

Extremophiles can also be useful players in the bioremediation of contaminated sites as some species are capable of biodegradation under conditions too extreme for classic bioremediation candidate species. Anthropogenic activity causes the release of pollutants that may potentially settle in extreme environments as is the case with tailings and sediment released from deep-sea mining activity. While most bacteria would be crushed by the pressure in these environments, piezophiles can tolerate these depths and can metabolize pollutants of concern if they possess bioremediation potential.

Hydrocarbons are multiple potential destinations for hydrocarbons after an oil spill has settled and currents routinely deposit them in extreme environments. Methane bubbles resulting from the Deepwater Horizon oil spill were found 1.1 kilometers below water surface level and at concentrations as high as 183 μmol per kilogram.The combination of low temperatures and high pressures in this environment result in low microbial activity. However, bacteria that are present including species of Pseudomonas, Aeromonas and Vibrio were found to be capable of bioremediation, albeit at a tenth of the speed they would perform at sea level pressure. Polycyclic Aromatic Hydrocarbons increase in solubility and bioavailability with increasing temperature. Thermophilic Thermus and Bacillus species have demonstrated higher gene expression for the alkane mono-oxygenase alkB at temperatures exceeding 60 C.The expression of this gene is a crucial precursor to the bioremediation process. Fungi that have been genetically modified with cold-adapted enzymes to tolerate differing pH levels and temperatures have been shown to be effective at remediating hydrocarbon contamination in freezing conditions in the Antarctic.

Acidithiubacillus ferroxidans has been shown to be effective in remediating mercury in acidic soil due to its merA gene making it mercury resistant. Industrial effluent contain high levels of metals that can be detrimental to both human and ecosystem health.

Applied Microbiology is a peer-reviewed Open Access Journal, encourages on-going international research and articles related to but not limited to Medical microbiology, pathogenic microbes, Pharmaceutical microbiology (antibiotics, enzymes, vitamins, vaccines) Industrial microbiology, Microbial biotechnology, Plant pathology, Veterinary, Food, Agricultural, Soil, Environmental Microbiology, etc.

rolex submariner clone

It’s our privilege to recite you as a foremost strategist in the realm of research and invite to endowment your research penmanship to write (volume 7 issue 8) Short Communication or mini review on above topic to be published in our journal.

Applied Microbiology: Open Access follows Editorial Tracking System for quality in peer review process. Editorial Tracking is an online manuscript submission, review and tracking systems used by most of the best open access journals.

Submit manuscripts at https://www.longdom.org/editorial-tracking/index.php

or send as an e-mail attachment to the Editorial Office at microbiology@journalsci.org

Manuscripts accepted for publication will be published both in English and other languages as recommended by the author.

Best Regards,

Jessica

Journal Manager

Applied Microbiology: Open Access

Whatsup no: +442036958168

Email: appliedmicrobio@medicalsci.org