Brief Note on Prokaryote

A prokaryote is a typically unicellular organism that lacks a nuclear membrane-enclosed nucleus. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria (formerly Eubacteria) and Archaea (formerly Archaebacteria). Organisms with nuclei are placed in a third domain, Eukaryota. In the study of the origins of life, prokaryotes are thought to have arisen before eukaryotes.
Prokaryotes lack mitochondria, or any other eukaryotic membrane-bound organelles and it was once thought that prokaryotes lacked cellular compartments, and therefore all cellular components within the cytoplasm were unenclosed, except for an outer cell membrane. But bacterial microcompartments, which are thought to be simple organelles enclosed in protein shells, have been discovered, along with other prokaryotic organelles. While typically being unicellular, some prokaryotes, such as cyanobacteria, may form large colonies. Others, such as myxobacteria, have multicellular stages in their life cycles. Prokaryotes are asexual, reproducing without fusion of gametes, although horizontal gene transfer also takes place.
Molecular studies have provided insight into the evolution and interrelationships of the three domains of life. The division between prokaryotes and eukaryotes reflects the existence of two very different levels of cellular organization; only eukaryotic cells have an enveloped nucleus that contains its chromosomal DNA, and other characteristic membrane-bound organelles including mitochondria. Distinctive types of prokaryotes include extremophiles and methanogens; these are common in some extreme environments.
Prokaryotes have a prokaryotic cytoskeleton that is more primitive than that of the eukaryotes. Besides homologues of actin and tubulin, the helically arranged building-block of the flagellum, flagellin, is one of the most significant cytoskeletal proteins of bacteria, as it provides structural backgrounds of chemotaxis, the basic cell physiological response of bacteria. At least some prokaryotes also contain intracellular structures that can be seen as primitive organelles. Membranous organelles (or intracellular membranes) are known in some groups of prokaryotes, such as vacuoles or membrane systems devoted to special metabolic properties, such as photosynthesis or chemolithotrophy. In addition, some species also contain carbohydrate-enclosed microcompartments, which have distinct physiological roles (e.g. carboxysomes or gas vacuoles).
Prokaryotes have diversified greatly throughout their long existence. The metabolism of prokaryotes is far more varied than that of eukaryotes, leading to many highly distinct prokaryotic types. For example, in addition to using photosynthesis or organic compounds for energy, as eukaryotes do, prokaryotes may obtain energy from inorganic compounds such as hydrogen sulfide. This enables prokaryotes to thrive in harsh environments as cold as the snow surface of Antarctica, studied in cryobiology, or as hot as undersea hydrothermal vents and land-based hot springs.
Prokaryotes live in nearly all environments on Earth. Some archaea and bacteria are extremophiles, thriving in harsh conditions, such as high temperatures (thermophiles) or high salinity (halophiles). Many archaea grow as plankton in the oceans. Symbiotic prokaryotes live in or on the bodies of other organisms, including humans.
Bacteria and archaea reproduce through asexual reproduction, usually by binary fission. Genetic exchange and recombination still occur, but this is a form of horizontal gene transferand is not a replicative process, simply involving the transference of DNA between two cells, as in bacterial conjugation.
Applied Microbiology is a peer-reviewed Open Access Journal, encourages on-going international research and articles related to but not limited to Medical microbiology, pathogenic microbes, Pharmaceutical microbiology (antibiotics, enzymes, vitamins, vaccines) Industrial microbiology, Microbial biotechnology, Plant pathology, Veterinary, Food, Agricultural, Soil, Environmental Microbiology, etc.
It’s our privilege to recite you as a foremost strategist in the realm of research and invite to endowment your research penmanship to write (volume 7 issue 8) Short Communication or mini review on above topic to be published in our journal.
Applied Microbiology: Open Access follows Editorial Tracking System for quality in peer review process. Editorial Tracking is an online manuscript submission, review and tracking systems used by most of the best open access journals.
Submit manuscripts at https://www.longdom.org/editorial-tracking/index.php
or send as an e-mail attachment to the Editorial Office at microbiology@journalsci.org
Manuscripts accepted for publication will be published both in English and other languages as recommended by the author.
Best Regards,
Jessica
Journal Manager
Applied Microbiology: Open Access
Whatsup no: +442036958168
Email: appliedmicrobio@medicalsci.org