A Brief Note on Interleukin 2

Interleukin-2 (IL-2) is an interleukin, a type of cytokine signaling molecule in the immune system. It is a 15.5–16 kDa protein that regulates the activities of white blood cells that are responsible for immunity. IL-2 is part of the body's natural response to microbial infection, and in discriminating between foreign "non-self" and "self". IL-2 mediates its effects by binding to IL-2 receptors, which are expressed by lymphocytes. The major sources of IL-2 are activated CD4+ T cells and activated CD8+ T cells.
IL-2 receptor
IL-2 is a member of a cytokine family, each member of which has a four alpha helix bundle; the family also includes IL-4, IL-7, IL-9, IL-15 and IL-21. IL-2 signals through the IL-2 receptor, a complex consisting of three chains, termed alpha (CD25), beta (CD122) and gamma (CD132). The gamma chain is shared by all family members.
The IL-2 receptor (IL-2R) α subunit binds IL-2 with low affinity (Kd ~ 10−8 M). Interaction of IL-2 and CD25 alone does not lead to signal transduction due to its short intracellular chain but has the ability (when bound to the β and γ subunit) to increase the IL-2R affinity 100-fold. Heterodimerization of the β and γ subunits of IL-2R is essential for signalling in T cells. IL-2 can signalize either via intermediate-affinity dimeric CD122/CD132 IL-2R (Kd~ 10−9 M) or high-affinity trimeric CD25/CD122/CD132 IL-2R (Kd~ 10−11 M). Dimeric IL-2R is expressed by memory CD8+ T cells and NK cells, whereas regulatory T cells and activated T cells express high levels of trimeric IL-2R.
IL-2 signaling pathways and regulation
The pleiotropic effects of IL-2 are enabled due to the fact that IL-2 signal can be transduced via 3 different signaling pathways; JAK-STAT, PI3K/Akt/mTOR and MAPK/ERK pathway. After IL-2 binding to its receptor, cytoplasmatic domains of CD122 and CD132 heterodimerize. This leads to the activation of Janus kinases JAK1 and JAK3 which subsequently phosphorylate T338 on CD122. This phosphorylation recruits STAT transcription factors, predominantly STAT5, which dimerize and migrate to the cell nucleus where they bind to DNA.
Gene expression regulation for IL-2 can be on multiple levels or by different ways. One of the checkpoints is signaling through TCR, antigen receptor of T-lymphocytes after recognizing MHC-peptide complex. Signaling pathway from TCR then goes through phospholipase-C (PLC) dependent pathway. PLC activates 3 major transcription factors and their pathways: NFAT, NFkB and AP-1. After costimulation from CD28 the optimal activation of expression of IL-2 and these pathways is induced.
At the same time Oct-1 is expressed. It helps the activation. Oct1 is expressed in T-lymphocytes and Oct2 is induced after cell activation.
Depending on the tissue type and the method of antigen detection, endogenous biotin or enzymes may need to be blocked or quenched, respectively, prior to antibody staining. Although antibodies show preferential avidity for specific epitopes, they may partially or weakly bind to sites on nonspecific proteins that are similar to the cognate binding sites on the target antigen. A great amount of non-specific binding causes high background staining which will mask the detection of the target antigen.
Function
IL-2 has essential roles in key functions of the immune system, tolerance and immunity, primarily via its direct effects on T cells. In the thymus, where T cells mature, it prevents autoimmune diseases by promoting the differentiation of certain immature T cells into regulatory T cells, which suppress other T cells that are otherwise primed to attack normal healthy cells in the body. IL-2 enhances activation-induced cell death (AICD). IL-2 also promotes the differentiation of T cells into effector T cells and into memory T cells when the initial T cell is also stimulated by an antigen, thus helping the body fight off infections. Together with other polarizing cytokines, IL-2 stimulates naive CD4+ T cell differentiation into Th1 and Th2 lymphocytes while it impedes differentiation into Th17 and folicular Th lymphocytes. IL-2 increases the cell killing activity of both natural killer cells and cytotoxic T cells.
Submit manuscript at https://www.longdom.org/submissions/immunotherapy-open-access.html or send as an e-mail attachment to the Editorial Office at immunotherarpy@longdomjournal.org
Media contact:
Eliza Grace
Managing Editor
Immunotherapy: Open Access
Mail ID: immunotherarpy@longdomjournal.org